читайте также
Это произошло на заводе будущего. Новое промышленное предприятие Tesla во Фримонте (Калифорния), получившее название «Инопланетный Дредноут», было разработано как полностью автоматизированное — без необходимости задействовать людей. Предполагалось, что роботы с искусственным интеллектом помогут компании выпускать 5 тыс. автомобилей Tesla Model 3 в неделю, что позволит удовлетворить растущий спрос. Но реальность оказалась не столь радужной: компания производила всего 2 тыс. автомобилей. Как выяснилось, полная автоматизация не столь хороша, как все думают. По мнению CEO компании Илона Маска, сложные роботы на деле замедляют, а не ускоряют, производство.
Tesla решила приостановить производство, чтобы устранить неполадки и установить большое временное сооружение — в сущности, это шатер — для дополнительных работ. Также компания наняла несколько сотен работников, чтобы реформировать процесс производства, обучить (и переобучить) роботов и при необходимости подменить их. Сам Илон Маск в апреле написал в твиттере: «Полная автоматизация была ошибкой, точнее, моей ошибкой. Человеческий ресурс недооценивают».
Tesla не единственная компания, столкнувшаяся с подводными камнями полной автоматизации. Мы провели глобальное исследование более чем 1 тыс. компаний, стоящих в авангарде использования ИИ, и обнаружили, что наибольшая производительность достигается не тогда, когда машины заменяют людей, а когда используются для работы с ними. Такое отношение помогает машинам стать лучше, а людям — перейти на более высокий уровень производительности.
Добавляем в рецепт людей
Для Tesla усилить человеческий ресурс — значит расширить традиционные виды деятельности дополнительными обязанностями, которые могли бы обеспечить бесперебойную и эффективную работу «Инопланетного Дредноута». Так, например, супервайзер в сфере обслуживания оборудования должен не просто ежечасно отслеживать работу техперсонала и руководить ремонтом оборудования, но и обладать инженерными навыками и знать робототехнику. А персонал по техническому обслуживанию должен не просто уметь диагностировать и устранять неполадки промышленного оборудования. Сотрудники обязаны использовать множество методик анализа, таких как термография и вибрационная диагностика, чтобы заранее определять, когда применять те или иные профилактические процедуры для предотвращения поломок.
И это не просто старые позиции в штатном расписании с расширенными полномочиями. Наш анализ показал, что к традиционным формам деятельности прибавились совершенно новые категории рабочих мест. Так же, как когда-то благодаря интернету появились веб-дизайнеры и специалисты SEO, в эру ИИ появятся новые профессии. Tesla, к примеру, нанимает инженеров-робототехников, специалистов по компьютерному зрению, разработчиков систем машинного обучения. Компания также опубликовала список более экзотичных вакансий для ИИ-специалистов, таких как инженер по алгоритмам аккумуляторных батарей и инженер по системам датчиков слежения и прогноза. Для названных специальностей требования выходят за пределы знания литий-ионных элементов (емкость ячеек, сопротивление, мощность и т.д.) и теперь включают экспертные знания в разработке алгоритмов контроля и обратной связи. Это не просто технически переосмысленные задачи. Фактически, как обнаружила Tesla и другие компании, технологии ИИ оказывают влияние на все предприятие, от продаж и маркетинга до НИОКР и таких функций бэк-офиса, как бухгалтерия и финансы. Например, Tesla применяет ИИ-системы для обработки данных клиентов, включая информацию из онлайн-отзывов на сайте компании, чтобы выявить проблемы с автомобилями.
Запрос на обучение
Очевидно, что найти людей на вакансию «инженер по алгоритмам аккумуляторных батарей» не самая простая задача — учитывая серьезную нехватку специалистов по ИИ, которая способствовала взлету их годовых зарплат выше $300 тысяч. Так что многие компании стараются вырастить таланты собственными силами внутри организации. Исследование показало: хотя руководители осознали всю сложность новых программ переподготовки, почти три четверти из опрошенных 1,5 тыс. крупных компаний сообщили, что испытывают трудности с дальнейшими действиями.
С учетом того, что только около 3% компаний занимаются планированием переобучения специалистов, а также сотрудничества как с внешними партнерами, так и с государственными учреждениями, это может потребовать существенных дополнительных инвестиций. Возьмем, к примеру, Speedfactory — современный завод компании Adidas, недавно начавший производство под Атлантой. Чтобы открыть роботизированное предприятие площадью 7 тыс. квадратных метров, которое позволит повысить гибкость производства спортивной обуви, разработанной специально для местных потребителей, Adidas работал в тесном сотрудничестве с властями штата Джорджии, а также с расположенной в Германии компанией OECHSLER Motion. В настоящее время на производстве работает около 150 сотрудников на различных технических позициях: проектировщики, инженеры, швейники, технологи. Пока завод строился, сотрудники OECHSLER работали из стартап-хаба, созданного в рамках партнерства между Техническим колледжем Чатахучи и управлениями экономического развития округа Чероки и города Вудсток. Также в рамках господдержки штат выделил налоговый кредит в размере $3,5 тысяч за каждое созданное рабочее место и оказал помощь в обучении по программе Georgia Quick Start. Кроме того, Adidas отправила своих сотрудников в Германию для обучения работе с роботизированным оборудованием на базе искусственного интеллекта.
По мере развития обучения персонала некоторые компании начали вводить свои собственные программы сертификации, чтобы помочь сотрудникам приобрести необходимые знания и экспертизу. Например, отдел глобальных исследований GE запустил онлайн-курсы по машинному обучению и другим специфическим навыкам. Несколько сотен сотрудников уже прошли корпоративную программу аттестации по анализу данных, что позволило им приступить к новым видам работ.
Возвращаясь к истории Tesla, заметим, что рабочие, занятые Model 3, учатся больше, чем остальной производственный персонал компании. В программу обучения входит получение в классах начальных и фундаментальных производственных знаний. Tesla также запустила новые программы обучения технического персонала, например, помогающие сотрудникам перейти от работы над двигателями внутреннего сгорания к разработке электромобилей. Также компания в партнерстве с колледжами дает студентам образование, необходимое им для карьеры в индустрии электромобилей.
Насколько бы масштабно Tesla ни вводила автоматизацию и ИИ, успех компании в конечном итоге будет зависеть от людей. Для удовлетворения растущего спроса на Model 3 Маск объявил о своем желании запустить три смены в день для безостановочной работы. Чтобы достигнуть этого, планируется нанимать около 400 работников в неделю, что приведет к значительному спросу на обучение без отрыва от производства. Обучение нанятых сотрудников будет ключевым моментом для достижения эффективного масштабирования производства, учитывая сравнительно низкую цену на автомобиль, начинающуюся с $35 тысяч. Согласно одному из прогнозов, Model 3 потенциально способна достичь уровня маржинальности в 30%, что было бы беспрецедентно для транспортных средств на аккумуляторных батареях. Но даже при том, что в итоге компания достигла целевых объемов производства в 5 тыс. машин в последнюю неделю июня, пока под вопросом, сможет ли она поддерживать и наращивать столь агрессивные темпы. Как ни странно, на производстве будущего люди необходимы даже в большей степени, чем когда-либо ранее.
Об авторах
Г. Джеймс Уилсон (H. James Wilson) — управляющий директор подразделения ИТ и бизнес-исследований в исследовательской компании Accenture Research. В соавторстве с Полом Догерти написал книгу Human + Machine: Reimagining Work in the Age of AI.
Пол Р. Доэрти (Paul R. Daugherty) — директор по технологиям и инновациям консалтинговой компании Accenture. Вместе с Джеймсом Уилсоном написал книгу Human + Machine: Reimagining Work in the Age of AI.